ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Marius Zamfirache, Anisia Bornea, Ioan Stefanescu
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 590-594
Technical Note | doi.org/10.1080/15361055.2016.1273698
Articles are hosted by Taylor and Francis Online.
ICSI Rm. Valcea is the leading research institute involved in the Romanian heavy water detrititiation program. ICSI has built a Tritium Removal Facility which is an experimental pilot plant for deuterium and tritium separation - its main objectives being to demonstrate detritiation technology followed by implementation at the CANDU nuclear power plant in Cernavoda.
Within isotope separation installations using a cryogenic distillation process, the required gas purity must be high to avoid the risk of impurity condensation. A preferred and recommended purification process is solidifying impurities over a large material area heat exchanger device. Such a system is usually a regenerative type to ensure continuous operation. Gas Purification is achieved either by means of reversible heat exchangers or thermal regenerators.
Reversible exchangers and regenerators have a periodic operation, a warm period and a cold period. During the warm period, the heat exchanger or regenerator mass heat up cooling the purified gas, while in the cold period, the cold waste gas heat up the exchanger or the regenerator.
Essentially, the impurity solidification purification process is the same for both the reversible exchanger and regenerator, but because of their differences the process description will be different and so also the design method. Due to periodic operation of a regenerative system the process is unsteady, its description utilizing highly complex mathematics. For this reason it is of particular interest to have a very well developed mathematical description of non-stationary heat exchange processes, incorporating simultaneous mass and heat exchange processes taking place in the regenerative systems.
This paper presents a conceptual scheme of a purification unit consisting of two stages (the first being a drying system followed by an advanced cryogenic purification). A theoretical analysis of the second stage of the process will be developed. Due to cyclic operation (cooling, retention, cleaning) the process is carried-out in the non-stationary regime, thus the mathematical description is complex but needed to design such a system.
Also presented is a theoretical analysis of the purification of an impurity-laden gas, using the calculation model developed with the proposed regenerative system.