ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Fumito Okino, Laetitia Frances, David Demange, Ryuta Kasada, Satoshi Konishi
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 575-583
Technical Note | doi.org/10.1080/15361055.2017.1290972
Articles are hosted by Taylor and Francis Online.
Quantitative feasibility analysis of the tritium recovery efficiency from multiple columns of liquid PbLi droplets was conducted. Then a case study based on the HCLL specification was performed. Main concern was whether the experimentally obtained recovery efficiency from a column of droplets is applicable for the efficiency estimation from the multiple columns of droplets without any mutual degrading effects. To maintaining a safe side assumption, the tritium once released and reabsorbed on another droplet was considered to be not re-emitted while falling. By the analogy with the thermal radiation theory, the view factor which expresses the intersection ratio of radiation on another surface was applied for the estimation. The dependences on nozzle design parameters, such as nozzle pitch, number of nozzles, chamber wall clearance, and exhaust port design, were investigated. Case study results suggest that, by choosing well-suited parameters approximately 40% to 60% of the single column recovery efficiency was secured for multiple columns even on the conservative condition. The release chamber exhaust port design had a major influence. Nozzle pitch and array design have less influences, but are not negligible. However, it has to be experimentally verified to the scale-size effects and experimental programs are currently underway.