ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Fumito Okino, Laetitia Frances, David Demange, Ryuta Kasada, Satoshi Konishi
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 575-583
Technical Note | doi.org/10.1080/15361055.2017.1290972
Articles are hosted by Taylor and Francis Online.
Quantitative feasibility analysis of the tritium recovery efficiency from multiple columns of liquid PbLi droplets was conducted. Then a case study based on the HCLL specification was performed. Main concern was whether the experimentally obtained recovery efficiency from a column of droplets is applicable for the efficiency estimation from the multiple columns of droplets without any mutual degrading effects. To maintaining a safe side assumption, the tritium once released and reabsorbed on another droplet was considered to be not re-emitted while falling. By the analogy with the thermal radiation theory, the view factor which expresses the intersection ratio of radiation on another surface was applied for the estimation. The dependences on nozzle design parameters, such as nozzle pitch, number of nozzles, chamber wall clearance, and exhaust port design, were investigated. Case study results suggest that, by choosing well-suited parameters approximately 40% to 60% of the single column recovery efficiency was secured for multiple columns even on the conservative condition. The release chamber exhaust port design had a major influence. Nozzle pitch and array design have less influences, but are not negligible. However, it has to be experimentally verified to the scale-size effects and experimental programs are currently underway.