ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kirk L. Shanahan
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 555-564
Technical Note | doi.org/10.1080/15361055.2017.1291042
Articles are hosted by Taylor and Francis Online.
Tritium decays to 3He, and when this decay occurs inside a metal tritide, the 3He is largely retained in the material’s bulk. This impacts the subsequent behavior of the hydrogen isotope absorption and desorption, altering the materials thermodynamic characteristics. Chemical substitution can form alternative miscible hydridable metal alloys over some concentration ranges with modified thermodynamic properties. This allows the ‘tuning’ of metal hydride characteristics to expand the inventory of available materials for use, potentially allowing a closer match to desired performance characteristics. It is important to quantify tritium aging effects in order to predict the long term, in-process behavior of metal hydride materials. The Savannah River National Laboratory has been interested in elucidating the impact of tritium exposure on the behavior of hydrideable metals and metal alloys. Pd alloy foils of nominal 5 and 9 at% Cr, Ni, and Co, were loaded with tritium, and stored for ~1 year in static storage. One sample (Pd-4.8 at% Ni) was subsequently stored for an additional ~3 years. Isotherms were determined following storage periods to study the tritium induced changes caused by tritium decay. Typical effects such as plateau pressure depression and heel formation were noted. The materials proved to be unusually sensitive to the isotherm determination process and decay effects were partially reversed, or “healed”. The Pd-4.8wt%Ni sample was removed from its storage unit, whereupon it was found to have turned into powder, and further studied with additional techniques elsewhere.