ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Kirk L. Shanahan
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 555-564
Technical Note | doi.org/10.1080/15361055.2017.1291042
Articles are hosted by Taylor and Francis Online.
Tritium decays to 3He, and when this decay occurs inside a metal tritide, the 3He is largely retained in the material’s bulk. This impacts the subsequent behavior of the hydrogen isotope absorption and desorption, altering the materials thermodynamic characteristics. Chemical substitution can form alternative miscible hydridable metal alloys over some concentration ranges with modified thermodynamic properties. This allows the ‘tuning’ of metal hydride characteristics to expand the inventory of available materials for use, potentially allowing a closer match to desired performance characteristics. It is important to quantify tritium aging effects in order to predict the long term, in-process behavior of metal hydride materials. The Savannah River National Laboratory has been interested in elucidating the impact of tritium exposure on the behavior of hydrideable metals and metal alloys. Pd alloy foils of nominal 5 and 9 at% Cr, Ni, and Co, were loaded with tritium, and stored for ~1 year in static storage. One sample (Pd-4.8 at% Ni) was subsequently stored for an additional ~3 years. Isotherms were determined following storage periods to study the tritium induced changes caused by tritium decay. Typical effects such as plateau pressure depression and heel formation were noted. The materials proved to be unusually sensitive to the isotherm determination process and decay effects were partially reversed, or “healed”. The Pd-4.8wt%Ni sample was removed from its storage unit, whereupon it was found to have turned into powder, and further studied with additional techniques elsewhere.