ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
David Carpenter, Michael Ames, Guiqiu Zheng, Gordon Kohse, Lin-wen Hu
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 549-554
Technical Paper | doi.org/10.1080/15361055.2017.1291040
Articles are hosted by Taylor and Francis Online.
The MIT Nuclear Reactor Laboratory (NRL) has irradiated lithium-beryllium fluoride (flibe) salt as part of an on-going U.S. Department of Energy-funded Integrated Research Project to develop a Fluoride Salt High-Temperature Reactor (FHR). As part of this project, the NRL has carried out two irradiations of FHR materials in static flibe at 700°C in the MIT Research Reactor. These irradiations marked the start of a program evaluating the tritium production and release from the fluoride salt system at high temperature; in particular, there is interest in the evolution of tritium from the salt into solid materials and cover gasses. This paper describes the experience gained from the irradiation of flibe with respect to the detection of tritium. It covers the development of techniques for monitoring the evolution of tritium from the salt during irradiation and the factors particular to the FHR system that influence this process, including the radiolytic production and release of volatile fluorine and fluoride products as a function of temperature. In addition, it discusses the measurement of tritium partitioning between the different materials in the experiment due to the confluence of diffusion, adsorption, and chemical and radiolytic reactions.