ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
V. D’Auria, S. Dulla, P. Ravetto, L. Savoldi, M. Utili, R. Zanino
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 537-543
Technical Paper | doi.org/10.1080/15361055.2017.1291252
Articles are hosted by Taylor and Francis Online.
The current studies on the development of the EU DEMO breeding blanket include among the options the use of liquid Lithium-Lead (17Li-83Pb) as tritium breeder (and multiplier), with different coolants. As the tritium is steadily produced in the blanket during the reactor operation, suitably efficient strategies for the Tritium Extraction System (TES) from the breeder must be developed, allowing a closed fuel cycle in situ and avoiding tritium accumulation in the machine. The Permeator Against Vacuum (PAV) appears to be one of the most promising solutions to achieve this goal. In this paper, the performance of a PAV system is studied by means of different models describing the transport of tritium in the liquid PbLi and in the metallic membrane separating it from the vacuum. The comparison of the results for different membrane materials and size of the device, for a given target efficiency, allows to optimize the PAV design, also taking into account corrosion issues. The approximations and limitations of the adopted models are also addressed.