ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
V. D’Auria, S. Dulla, P. Ravetto, L. Savoldi, M. Utili, R. Zanino
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 537-543
Technical Paper | doi.org/10.1080/15361055.2017.1291252
Articles are hosted by Taylor and Francis Online.
The current studies on the development of the EU DEMO breeding blanket include among the options the use of liquid Lithium-Lead (17Li-83Pb) as tritium breeder (and multiplier), with different coolants. As the tritium is steadily produced in the blanket during the reactor operation, suitably efficient strategies for the Tritium Extraction System (TES) from the breeder must be developed, allowing a closed fuel cycle in situ and avoiding tritium accumulation in the machine. The Permeator Against Vacuum (PAV) appears to be one of the most promising solutions to achieve this goal. In this paper, the performance of a PAV system is studied by means of different models describing the transport of tritium in the liquid PbLi and in the metallic membrane separating it from the vacuum. The comparison of the results for different membrane materials and size of the device, for a given target efficiency, allows to optimize the PAV design, also taking into account corrosion issues. The approximations and limitations of the adopted models are also addressed.