ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Anisia Bornea, Marius Zamfirache, Ioan Stefanescu
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 532-536
Technical Paper | doi.org/10.1080/15361055.2017.1290973
Articles are hosted by Taylor and Francis Online.
Water – hydrogen catalytic isotopic exchange is the front-end detritiation technology that is used in the pilot plant at ICSI Rm. Valcea. It is also chosen as the main technology for the Tritium Removal Facility will be built at the Cernavoda NPP, Romania. The performance of the isotopic exchange process is mainly determined by the composition of the packing used in the catalytic isotopic exchange columns of the installations. In order to have a good working the packing should consist out of two components: i) a catalyst to enable the isotopic exchange and ii) a hydrophilic packing to maximize the fluid surface that can participate in the isotopic exchange. It is important that these two components of the packing are arranged in such a way that a uniform flow along and across the exchange column is ensured. To achieve a high performance packing theoretical and experimental research that took several years was necessary. The impact of the catalyst /hydrophilic packing ratio, the structure of these materials and their mutual arrangement were investigated. Theoretical analyses based on mathematical models contributed were used to select the optimal exchange column compositions for experimental research. This paper presents a theoretical analysis developed to set up a high performance catalyst-packing mixture, as well as the developed graphical and numerical mathematical models that allowed for this analysis.