ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Bükki-Deme, P. Calderoni, D. Demange, E. Fanghänel, T.-L. Le, M. Sirch, I. Ricapito
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 527-531
Technical Paper | doi.org/10.1080/15361055.2017.1288976
Articles are hosted by Taylor and Francis Online.
ZrCo is a well-known tritium storage material and has been studied intensively in the literature. The most interesting properties with regards to the thermodynamics of the ZrCo-H system are the very low H2 partial pressure in equilibrium with ZrCoH3 at room temperature and the ease to reach sufficiently high temperature to completely release the stored H2. These properties motivate also to use ZrCo not as a simple storage, but rather as a concentrator of hydrogen isotopologues from inert gases like He. With such function, ZrCo getter beds are the reference solution adopted in the conceptual design of the tritium extraction system of the European Test Blanket Modules (TBM) to replace the cryogenic molecular sieve bed previously proposed. An experimental campaign was carried out on ZrCo in order to consolidate this choice. The results confirmed that ZrCo performs well as getter material but only substantially below the maximum loading capacity. They revealed that the dynamic thermo-mechanical response of the material, controlled by temperature and H2 concentration, is the main limiting factor for the component performance.