ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Y. Yamasaki, S. Fukada, K. Hiyane, K. Katayama
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 501-506
Technical Paper | doi.org/10.1080/15361055.2017.1291028
Articles are hosted by Taylor and Francis Online.
In order to make proof of the recovery of hydrogen isotopes from a liquid lithium (Li) blanket, we experimented the recovery of deuterium (D) dissolved in Li by means of yttrium (Y) metal at 300°C. In the experiment, 160 wppm D dissolved in Li was removed down to 1 wppm by means of the Y trap maintained at 300°C under fluidized Li conditions. The ratio of the final-state D concentration dissolved in Li to the initial one is defined as a removal efficiency, and the removal efficiency was found to be in proportion to the D concentration remained in Li. In addition, judging from its dependence on D concentration remained in Li, it was found that the removal efficiency is well consistent with the secondary-order reaction process and the removal efficiency was correlated to a function of contact time.