ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
P. Camp, E. Belonohy, I. S. Carvalho, S. Knipe, X. Lefebvre, S. A. Medley, R. Olney, S. Romanelli, R. C. R. Shaw, R. Smith, B. Wakeling, R. J. Walker, D. Wilson
Fusion Science and Technology | Volume 71 | Number 4 | May 2017 | Pages 457-466
Technical Paper | doi.org/10.1080/15361055.2017.1288457
Articles are hosted by Taylor and Francis Online.
The ActiveGas Handling System (AGHS) collects Tokamak exhaust gases from the JET machine and recovers, purifies and recycles the deuterium and tritium for fuelling the plasma. With the increasing fusion power and all-metal first wall and diverter, the forthcoming DTE2 experiment will see a change in the Tokamak exhaust composition compared to the DTE1 first series of experiments. A range of gases additional to those for fuelling the plasma will be added for critical applications such as plasma detachment and disruption mitigation.
One of these candidate gases is neon, which is anticipated to have a negative influence on storing the recovered hydrogen at an early stage of AGHS reprocessing. This paper will outline the trials and plant modifications which are in hand to provide a solution and enable downstream processes to operate as during DTE1. This will comprise a scrubbing circuit to mitigate the blanketing action of the neon in sorbing the hydrogen isotopes onto the existing depleted-uranium metal-hydride storage beds.
A second approach is also under study that has the potential to bring the tritium process circuit into closer alignment to that intended by ITER, thus providing process data for supporting the ITER fuel cycle design and increasing further the value of the JET experiments to the ITER project. JET’s torus gases recovered onto AGHS’s ITER Prototype Cryosorption Pump (PCP) will, on regeneration, be representative of the gas compositions received into ITER’s Tokamak Exhaust Processing (TEP) system front end. The following adaptions of AGHS are being considered to make processing more representative of ITER:
1. Helium, neon and hydrogen isotopes from 80 K regenerations of the PCP could be routed directly to a Pd-Ag permeator that will replicate the first stage of TEP hydrogen processing.
2. Other gases liberated from regenerating the PCP at 130 K (so-called “warm” regenerations) could be cycled around a nickel bed and permeator train that will approximate to the operation of a palladium membrane reactor which is a second processing route within the TEP system.