ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Peter Ozemoyah, John Robinson
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 450-456
Technical Note | doi.org/10.1080/15361055.2017.1291037
Articles are hosted by Taylor and Francis Online.
Tritium in everyday water (potable water) is frequently of a level that is too low for measurement with conventional instrumentation that is affordable by small laboratories. Scintillation counters that can measure in fractions of Becquerels per litre are usually out of the reach of most laboratories, especially in developing countries. By concentrating the tritium by a known amount, it can reach measurable levels that can be converted back to the original concentration. Affordability of the concentrating process is vital in the overall process.
A simple concentrating process based on purification and electrolysis was designed and fabricated. The tritium isotope enrichment level, the volumetric reduction and the time frame required for the enrichment were determined using the simple designed and fabricated process, and an easily affordable scintillation counter.
The simple designed and fabricated system effectively concentrated the tritium in the sampled water several times the initial value. The enrichment resulted in the output product being measurable in a non-expensive scintillation counter.