ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Melissa Golyski
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 422-425
Technical Note | doi.org/10.1080/15361055.2017.1293413
Articles are hosted by Taylor and Francis Online.
The high contamination potential of the release of radioactive tritium facilitates the demand for and development of a stringent and comprehensive approach to operational maintenance of tritium systems. Prompt and efficient maintenance is necessary to ensure the accepted operational safety basis is adhered to and a continued safe state of operation is achieved. This will help to mitigate and avoid potential hazards that result from a tritium release to the public and facility personnel. Because of the hazards associated with a release of tritium contamination the process systems are in large kept within a series of inerted glovebox environments that must be maintained to keep structural integrity. The nature of a tritium release from a glovebox could have significant consequences for the general public as well as for personnel. As such, the maintenance philosophy is developed to help facilitate operations in the adherence to the facility’s safety code of conduct.
To effectively facilitate the safe operation goals mentioned a well-defined maintenance philosophy has been developed that encompasses routine and non-routine maintenance activities. Examples of routine activities include preventative maintenance such as line-break inspections, helium leak tests to ensure components are leak tight, weld inspections and overall surveillance testing of essential components and infrastructure. Predictive maintenance also falls into this category. Predictive maintenance activities are developed over time in response to non-routine maintenance work. Non-routine maintenance or corrective maintenance activities are performed in response to a specific failure or to resolve a particular inadequacy in performance of tritium systems. When corrective maintenance is performed trends are often studied and more predictive maintenance can be scheduled to compensate for more routine failures.
This technical note will identify key operational maintenance considerations which when applied, will ensure that tritium handling systems are operated safely.