ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
K. J. Heroux, E. G. Estochen
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 410-415
Technical Note | doi.org/10.1080/15361055.2017.1291234
Articles are hosted by Taylor and Francis Online.
The hydriding-induced wall stress evaluation of a prototype Four-Inch SHort (FISH) tritium hydride bed revealed that the advanced design features do not result in additional strain on the process vessel walls during simulated operation. The maximum tensile wall stress measured at high hydrogen loadings (H/M > 0.7) was determined to be <40% of the ASME allowable limit for 316L stainless steel. Variation in wall stress with hydride loading was also examined via stepwise protium absorption and desorption. Minimal hydriding-induced wall stress was observed in the optimal operating range of the hydride material. The results described herein are in good agreement with previous studies on similar hydride storage beds without the advanced design features. Completed verification of ASME compliance for the FISH bed is a major milestone in its qualification for tritium service.