ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Paul Korinko, Richard Wyrwas, William Spencer, Brent Peters, Edward Stein, Dale Hitchcock
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 403-409
Technical Note | doi.org/10.1080/15361055.2017.1293415
Articles are hosted by Taylor and Francis Online.
Tritium is highly reactive with many materials. It is adsorbed onto and absorbed through the surface of containment vessels subsequently modifying the contained gas composition by isotopic exchange and catalytic reactions with surface elements and adsorbed gas species. Savannah River Tritium Enterprise (SRTE) uses a proprietary surface treatment that is intended to render the surface inert. Unfortunately, this process has not proven to be sufficiently robust for containing tritium gas standards. SRTE has funded a project that will explore the effects of electropolishing and vacuum and oxidizing thermal treatments on surface passivation of stainless steel (SS). Herein, a statistically designed series of experiments will be discussed that will inform optimized parameters for acid composition, current density, and other electrochemical process variables for the passivation of SS. The surfaces were analyzed using Laser Induced Breakdown Spectroscopy (LIBS), Auger Electron Spectroscopy (AES), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM). Novel techniques to characterize the passive layers are also being developed. In future experiments, gas sample bottles will be loaded with protium and deuterium to determine the relative exchange characteristics of the treated vessels. Previous work has indicated that if little protium ingrowth occurs or few contaminant species form, e.g., methane or ammonia, and little hydrogen exchange occurs in a protium and deuterium gas mixture the treatment is suitable for maintaining the tritium stability. This statement is not intended to imply that tritium, deuterium, protium mixes will not exchange, only that these results are useful as a screening tool prior to tritium exposure.