ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Paul Korinko, Richard Wyrwas, William Spencer, Brent Peters, Edward Stein, Dale Hitchcock
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 403-409
Technical Note | doi.org/10.1080/15361055.2017.1293415
Articles are hosted by Taylor and Francis Online.
Tritium is highly reactive with many materials. It is adsorbed onto and absorbed through the surface of containment vessels subsequently modifying the contained gas composition by isotopic exchange and catalytic reactions with surface elements and adsorbed gas species. Savannah River Tritium Enterprise (SRTE) uses a proprietary surface treatment that is intended to render the surface inert. Unfortunately, this process has not proven to be sufficiently robust for containing tritium gas standards. SRTE has funded a project that will explore the effects of electropolishing and vacuum and oxidizing thermal treatments on surface passivation of stainless steel (SS). Herein, a statistically designed series of experiments will be discussed that will inform optimized parameters for acid composition, current density, and other electrochemical process variables for the passivation of SS. The surfaces were analyzed using Laser Induced Breakdown Spectroscopy (LIBS), Auger Electron Spectroscopy (AES), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM). Novel techniques to characterize the passive layers are also being developed. In future experiments, gas sample bottles will be loaded with protium and deuterium to determine the relative exchange characteristics of the treated vessels. Previous work has indicated that if little protium ingrowth occurs or few contaminant species form, e.g., methane or ammonia, and little hydrogen exchange occurs in a protium and deuterium gas mixture the treatment is suitable for maintaining the tritium stability. This statement is not intended to imply that tritium, deuterium, protium mixes will not exchange, only that these results are useful as a screening tool prior to tritium exposure.