ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Priyanka Brahmbhatt, Amit Sircar, Rudreksh Patel, E. RajendraKumar, Sadhana Mohan, Kalyan Bhanja
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 391-396
Technical Note | doi.org/10.1080/15361055.2017.1289580
Articles are hosted by Taylor and Francis Online.
The Indian Lead Lithium Ceramic Breeder (LLCB) Test Blanket Module (TBM) is to be installed in one half of equatorial port #2 for testing in ITER machine. Liquid Pb-Li and solid Li2TiO3 are the tritium breeder materials in LLCB TBM. Tritium permeates through structural materials in particular at higher temperatures, which is a major operational and safety concern. Therefore, tritium flows in different locations of ITER Tokamak complex have been estimated.
Tritium transport from LLCB TBM and its ancillary systems into process rooms has been studied and analyzed in this work. A steady state diffusion limited permeation model neglecting surface effects has been used for the analysis. Tritium permeation to the Vacuum Vessel, Pipe Forest Area, Port Cell, Pipe Chase Area, Tokamak Cooling Water System Vault Annex (TCWS-VA) and Tritium Process Room in L-2 level has been estimated.
The requirement to be fulfilled in each equatorial port cell is that the tritium concentration in the port cell during maintenance operations should be below the admissible limit for human access (regulatory maximum allowable value < 1 DAC = 3.4 × 105 Bq/m3, Derived Air concentration). The presence of the Detritiation System (DS) in the Port cell has to be taken into account. This admissible limit for human access has to be reached in a sufficiently short time (target = 12 h) after plasma shutdown. Additional release during maintenance and radiological zoning with recommended <10 μSv/h need to be considered. Management of concentration of permeated tritium in different locations considering above requirement has also been discussed in this paper.