ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
State legislation: Colorado redefines nuclear as “clean energy resource”
Colorado Gov. Jared Polis signed a bill into law on Monday that adds nuclear to the state’s clean energy portfolio—making nuclear power eligible for new sources of project financing at the state, county, and city levels.
Sebastian Mirz, Uwe Besserer, Beate Bornschein, Robin Größle, Bennet Krasch, Stefan Welte
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 375-380
Technical Paper | doi.org/10.1080/15361055.2016.1273706
Articles are hosted by Taylor and Francis Online.
An integral part of the fuel cycle of future fusion facilities is the isotope separation system (ISS). The Tritium Laboratory Karlsruhe (TLK) is currently developing a system to monitor the concentration of all six hydrogen isotopologues Q2 (H2, HD, D2, HT, DT, T2) in the liquid phase in the cryogenic distillation process of the ISS.
Liquid inactive Q2 were already successfully analyzed under cryogenic conditions via infrared (IR) absorption spectroscopy and calibration data for D2 is provided by previous experiments at TLK. The new experiment T2ApIR (Tritium Absorption Infrared Spectroscopy Experiment) is designed to be fully tritium compatible to perform a complete calibration of the IR absorption measurement system with all six hydrogen isotopologues in the liquid phase under conditions similar to the ISS. This provides a unique non-invasive, inline and real-time measurement system for isotopologic concentration determination, ready for implementation in the cryogenic distillation column.