ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Fermilab center renamed after late particle physicist Helen Edwards
Fermi National Accelerator Laboratory’s Integrated Engineering Research Center, which officially opened in January 2024, is now known as the Helen Edwards Engineering Center. The name was changed to honor the late particle physicist who led the design, construction, commissioning, and operation of the lab’s Tevatron accelerator and was part of the Water Resources Development Act signed by President Biden in December 2024, according to a Fermilab press release.
Yasuhisa Oya, Cui Hu, Hiroe Fujita, Kenta Yuyama, Shodai Sakurada, Yuki Uemura, Suguru Masuzaki, Masayuki Tokitani, Miyuki Yajima, Yuji Hatano, Takumi Chikada
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 351-356
Technical Paper | doi.org/10.1080/15361055.2017.1291039
Articles are hosted by Taylor and Francis Online.
All the hydrogen isotope (H, D, T) simultaneous TDS (Thermal desorption spectroscopy) measurement system (HI-TDS system) was newly designed to evaluate all hydrogen isotope desorption behavior in materials. The present HI-TDS system was operated under Ar purge gas and the H and D desorptions were observed by a quadruple mass spectrometer equipped with an enclosed ion source, although T desorption was evaluated by an ionization chamber or proportional counters. Most of the same TDS spectra for D and T were derived by optimizing the heating rate of 0.5 K s−1 with Ar flow rate of 13.3 sccm.
Using this HI-TDS system, D and T desorption behaviors for D+2 implanted or DT gas exposed tungsten samples installed in LHD (Large Helical Device) at NIFS (National Institute for Fusion Science) was evaluated. It was found that major hydrogen desorption stages consisted of two temperature regions, namely 700 K and 900 K, which was consistent with the previous hydrogen plasma campaign and most of hydrogen would be trapped by the carbon-dominated mixed-material layer. By D+2 implantation, major D desorption was found at ~900 K with a narrow peak due to energetic ion implantation. For gas exposure, H was preferentially replaced by D and T with a lower trapping energy. In addition, T replacement rate by additional H2 gas exposure was evaluated. This fact indicates that the hydrogen replacement mechanism would be clearly changed by exposure methods.