ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A more open future for nuclear research
A growing number of institutional, national, and funder mandates are requiring researchers to make their published work immediately publicly accessible, through either open repositories or open access (OA) publications. In addition, both private and public funders are developing policies, such as those from the Office of Science and Technology Policy and the European Commission, that ask researchers to make publicly available at the time of publication as much of their underlying data and other materials as possible. These, combined with movement in the scientific community toward embracing open science principles (seen, for example, in the dramatic rise of preprint servers like arXiv), demonstrate a need for a different kind of publishing outlet.
Wolfgang Suttrop, Albrecht Herrmann, François Ryter, Jörg Karl Stober
Fusion Science and Technology | Volume 44 | Number 3 | November 2003 | Pages 636-649
Technical Paper | ASDEX Upgrade | doi.org/10.13182/FST03-A404
Articles are hosted by Taylor and Francis Online.
Studies in ASDEX Upgrade of the phenomenology and scaling of the H-mode transition, of edge-localized modes (ELMs), and characterization of the H-mode edge transport barrier carried out in various experimental campaigns between 1996 and 2001 are described. The H-mode transition is recognized by formation of a radial electrical field at the plasma boundary, which in ASDEX Upgrade is detected by an associated increase of the neutral particle charge exchange flux from ripple trapped particles. A scaling for the critical local edge temperature for the H-mode transition threshold is found. Similarity experiments with ASDEX Upgrade and Joint European Torus plasmas for the H-mode transition indicate that the H-mode transition can be obtained at the same values of dimensionless parameters *, *, and at the plasma edge, indicating that the threshold scaling is normally not dominated by atomic physics processes. Energy losses due to ELMs are examined. Different types of ELMs can be obtained, depending on plasma edge temperature and magnetics configuration. An interesting regime is the type II ELMy H-mode for configurations near double null, where the peak heat flux to the target is much reduced compared to large type I ELMs. High-resolution Thomson scattering measurements show that the edge transport barrier width in ASDEX Upgrade shows only weak variations, while the pedestal top electron pressure and pressure gradient strongly depend on the plasma current, or value of Bt/q95.