ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C. Muirhead, H. Li, K. Pilatzke, M. Byers, R. Carson, H. Boniface, S. Suppiah
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 281-285
Technical Paper | doi.org/10.1080/15361055.2017.1290974
Articles are hosted by Taylor and Francis Online.
Canadian Nuclear Laboratories (CNL) is developing a Proton Exchange Membrane-based (PEM) electrolyser intended for tritium removal. Commercially available Nafion® N-1110 membranes have been exposed to tritiated water (with a β activity of about 37 GBq/mL) prepared in the Tritium Facility at CNL. Three equivalent batches of Nafion® N-1110 membranes (each with a dimension of 4 cm × 4 cm) were exposed to β-doses of 67 kGy, 155 kGy, and 255 kGy, respectively.
The exposed membranes required decontamination for characterization and testing. A few different decontamination methods have been experimentally studied. These methods can be categorized as water elution and chemical soaking. The measured tritium concentration in eluent decreased quickly in the first 30 days of water elution, followed by a slow decay afterwards until reaching a plateau after about 100 days. Chemical soaking proved to be more effective than the water elution method and high temperature facilitated the tritium release.