ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. A. Boniface, N. V. Gnanapragasam, D. K. Ryland, S. Suppiah, A. Perevezentsev
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 241-245
Technical Paper | doi.org/10.1080/15361055.2017.1290970
Articles are hosted by Taylor and Francis Online.
The Water Detritiation System (WDS) designed for ITER is based on the combined electrolysis and catalytic exchange(CECE) process to ensure the emission of tritium to the environment is maintained below very strict limits. The CECE process is one of the processes for tritium removal that CNL (Canadian Nuclear Laboratories, formerly Atomic Energy of Canada Ltd.) has studied, developed and successfully demonstrated. In this work, CNL evaluated ITER’s design conditions of the exchange column and the electrolyser – the two key components of the CECE process (and the ITER WDS system) – to assess the effectiveness of tritium removal and investigate options to improve it. The evaluation was done using CNL’s CECE process simulation according to a protocol set out by ITER. Initially, calibration (benchmarking) of CNL’s hydrogen-water exchange column model was performed with a standard data set for a specified column to determine modeling parameters that resulted in a good match with the tritium concentration data. The model was then applied (with the same parameters) to the current WDS design. Some optimized conditions for the CECE process that could improve performance of the WDS to meet its design criteria were determined. The details of some of these assessments are presented here with particular attention to the WDS case where the feed water contains high levels of deuterium.