ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
L. Stefan, N. Trantea, A. Roberts, S. Strikwerda, A. Antoniazzi, D. Zaharia
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 236-240
Technical Paper | doi.org/10.1080/15361055.2017.1288413
Articles are hosted by Taylor and Francis Online.
ICSI has recently completed the conceptual design of the Cernavoda Tritium Removal Facility (CTRF). CTRF is sized to process heavy water from 2 CANDU reactors, treating 40 kg/h of 10–54 Ci/kg heavy water over 40 years. CTRF removes tritium using Liquid Phase Catalytic Exchange (LPCE) paired with Cryogenic Distillation (CD).
The CTRF design has implemented improvements based on design and operational knowledge from DTRF, WTRF, ICSI pilot plant, other tritium laboratories, and industry. Additionally, there are site, client, and regulatory requirements that have imposed differences from other TRF designs. This paper identifies the key improvements and requirements, explains the rationale for the design choice and highlights drawbacks. The key improvements and requirements, grouped under four categories, include:
Safety – a Safe Shutdown State, higher seismic qualifications, restrictions on D2O transfers, extensive use of double containment;
Core Systems – use of a mixed catalyst bed for the LPCE, no catalytic oxidation skid, helium refrigeration system cooling of the cryoadsorbers, better control of the CD cascade by using pumps on reverse flows, and the use of a CuO reactor with molecular sieves dryers for cleanup of tritium in glovebox atmospheres;
Site, client and regulatory requirements – lower worker dose limits, independent utilities from nuclear Units 1 and 2, different targets for environmental releases and management of external hazards, and the application of the latest reactor grade Regulatory Standards in force in Romania;
Auxiliary systems, utilities, and the building – removal of H2-O2 recombiner catalyst from the Air Detritiation System, use of a PEM electrolytic cell for D2 makeup, and no need for steam in the CTRF facility.