ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ion Cristescu, A. Bükki-Deme, R. Carr, N. Gramlich, R. Groessle, C. Melzer, P. Schaefer, Stefan Welte
Fusion Science and Technology | Volume 71 | Number 3 | April 2017 | Pages 225-230
Technical Paper | doi.org/10.1080/15361055.2017.1288057
Articles are hosted by Taylor and Francis Online.
The design of ITER tritium processing systems will benefit from experimental data and process validation based on experimental facilities that are ITER scale relevant. Several rigs and experimental facilities have been enhanced and developed at the Tritium Laboratory Karlsruhe (TLK) in order to explore a wide range of envisaged scenarios of tritium plant systems, such as the Water Detritiation System (WDS), Isotope Separation System (ISS) and highly tritiated water processing. In the last few years, detailed experimental investigations and process modeling have been conducted in relation to the Combined Electrolysis Catalytic Exchange and Isotope Separation (CECE-ISS) systems which were focused on evaluation of the impact of deuterium build-up and accumulation in the CECE system. An enhanced configuration of the ITER WDS has been developed, that allows mitigation of the effects due to deuterium accumulation and reduction of the tritium inventory within the electrolysis system. In addition, the benefits concerning the interface between the WDS and ISS are presented. Significant efforts have been made to enhance the simulation tool TRIMO++ that was calibrated against the experimental results collected from the experimental rigs. The new features of the simulation tools are introduced as well.
The main references of a new method aiming to mitigate the tritium permeation from the tritium processes streams into the non-contaminated streams such as steam generators are introduced. The reference configuration of first phase of the experimental rigs and the preliminary experimental activities are presented as well.