ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Ralph W. Moir
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 1169-1177
Fusion Power Reactor, Economic, and Alternate Concept | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40312
Articles are hosted by Taylor and Francis Online.
If the present research program is successful, heavy-ion beams can be used to ignite targets and to produce high gain for yields of about 350 MJ. HYLIFE-II is a power plant design based on surrounding such targets with thick liquid (Flibe, Li2BeF4) so that the chamber and other apparatus can not only stand up to these 350 MJ bursts of energy but do so without replacing components during the plant's 30-year life. The capacity factor will be increased and the cost of component replacement will be decreased. Continuous improvements to the design are being made to increase safety, decrease the generation of radioactive material, and reduce the cost of electricity (COE). Improvements discussed in this paper decreased COE for each effect by the amount in parentheses: increased plant size (22%), increased capacity factor and reduced component replacement (20%), reduced remote maintenance equipment (3.2%), use of non-nuclear grade chamber, pumps and piping (2.9%), reduced tritium inventory by a factor of 2.4, reduced excess tritium production with attendant increase energy release in the blanket (1.8%), corrected treatment of Flibe inventory costs (3.4%).