ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
W. Hui, B. Bamieh & G. H. Miley
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 1151-1157
Fusion Power Reactor, Economic, and Alternate Concept | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40309
Articles are hosted by Taylor and Francis Online.
An integrated 0-dimensional plasma-control code, ASH, has been developed and employed to study the possibility of controlling the burn condition of an ITER-type fusion reactor by modulating the refueling rate. A key feature of this study is the incorporation of robust control theory to allow for modeling uncertainties. A constant gain proportional feedback controller is synthesized; the values of feedback gains are obtained by the algorithm. With this control method, modulation of the refueling rate alone can potentially stabilize fusion burn with the alpha confinement time , or controller delay τdelay = 1.5τE, or D-T recycling ratio 98%. These limitations are fairly restrictive, indicating that added control, e.g., via input power modulation, may be necessary.