ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
State legislation: Delaware delving into nuclear energy possibilities
A bill that would create a nuclear energy task force in Delaware has passed the state Senate and is now being considered in the House of Representatives.
François Ryter, Albrecht Stäbler, Giovanni Tardini
Fusion Science and Technology | Volume 44 | Number 3 | November 2003 | Pages 618-635
Technical Paper | ASDEX Upgrade | doi.org/10.13182/FST03-A403
Articles are hosted by Taylor and Francis Online.
The studies carried out in ASDEX Upgrade on transport in conventional scenarios are presented. The well-known property of tokamak temperature profiles being resilient is investigated in and interpreted, for both ions and electrons, as due to the existence of an inverse critical gradient length below which transport is low and above which it increases. Experiments in H-mode with different heating power deposition profiles were carried out. Simulation results of a variety of H-mode plasmas with three different transport models based on the physics assumptions that include the existence of such a threshold confirm this hypothesis. However, the profiles are not extremely stiff and can significantly deviate from the critical value. Electron heat transport was investigated in various experiments using electron cyclotron heating combining steady-state and power modulation. A variation of the electron heat flux while keeping the edge flux constant allows measurement of the threshold and the properties of electron transport. These resilience properties lead to a correlation between core and edge and to a dependence of global confinement on the pedestal energy. This is quantified in the analyses of a database that yield expressions linking edge and global confinement.