ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
François Ryter, Albrecht Stäbler, Giovanni Tardini
Fusion Science and Technology | Volume 44 | Number 3 | November 2003 | Pages 618-635
Technical Paper | ASDEX Upgrade | doi.org/10.13182/FST03-A403
Articles are hosted by Taylor and Francis Online.
The studies carried out in ASDEX Upgrade on transport in conventional scenarios are presented. The well-known property of tokamak temperature profiles being resilient is investigated in and interpreted, for both ions and electrons, as due to the existence of an inverse critical gradient length below which transport is low and above which it increases. Experiments in H-mode with different heating power deposition profiles were carried out. Simulation results of a variety of H-mode plasmas with three different transport models based on the physics assumptions that include the existence of such a threshold confirm this hypothesis. However, the profiles are not extremely stiff and can significantly deviate from the critical value. Electron heat transport was investigated in various experiments using electron cyclotron heating combining steady-state and power modulation. A variation of the electron heat flux while keeping the edge flux constant allows measurement of the threshold and the properties of electron transport. These resilience properties lead to a correlation between core and edge and to a dependence of global confinement on the pedestal energy. This is quantified in the analyses of a database that yield expressions linking edge and global confinement.