ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Lloyd S. Nelson, Joseph D. Krueger, Michael L. Corradini
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 983-987
Tritium Technology, Safety, Environment, and Remote Maintenance | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40282
Articles are hosted by Taylor and Francis Online.
Twenty scoping experiments were performed to investigate the behavior of nominally 0.5 g molten lithium drops when released into 0.7 L of the organic coolant Therminol 66 at local atmospheric pressure using a vortex insertion technique. Diagnostics consisted of video and photographic imaging and several chemical analyses. Six coolant/Li temperature pairs were used: 300/300; 300/530; 300/770; 464/530; 600/530 and 600/770, all nominal in K. Because the coolant: Li weight ratio was 103, only rapid (∼0.5 s) quenching reactions could be studied when TLi > Tc; when TLi ≤ Tc, however, both rapid and slower (min) interactions could be investigated. In none of the experiments was there any indication of (a) a vigorous, self-sustaining chemical reaction between the lithium and the organic coolant, or (b) the formation of water-insoluble debris, in particular carbon. Our work confirms the benign behavior at similar temperatures reported earlier by others.