ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
F. Andritsos, M. Zucchetti
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 973-977
Tritium Technology, Safety, Environment, and Remote Maintenance | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40280
Articles are hosted by Taylor and Francis Online.
In a fusion reactor, the neutron flux will cause activation of the plasma chamber. The volumetric decay heat associated with this activation is removed, during normal operation, by forced flow cooling circuits. Its effects under post accidental conditions are a matter of concern since they can cause temperatures higher than allowed leading to the degradation of the properties and even structural failure of all or some of the reactor components. Here, an overview of the post accidental temperature transients, performed under the European Fusion Program for a variety of tokamak devices, is presented. The modelling activities, including the neutronic, activation and thermal part, are described. The latest results concerning the SEAFP reactor study are given. Generally, the most dangerous temperature peak happens long after the accident (typically 1 – 2 months) thus allowing for a considerable margin for intervention. Appropriate design of the region outwards from the vacuum vessel can provide the necessary thermal links so as not to compromise the structural stability of the containment even in the envelope conditions of complete and permanent loss of every form of active cooling.