ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
C. E. Annese, E. Greenspan
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 958-962
Fusion Diagnostic and Neutronic Experiment and Analysis | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40278
Articles are hosted by Taylor and Francis Online.
The computer time saving attainable by solving the transport equation for the higher neutron energy groups and the diffusion equation for the lower energy groups was investigated for fusion reactor safety applications. For the ARIES-I design considered, it was found that coupled diffusion-transport solutions can provide the activation rates in all the zones excluding the shield to within 2.5 % and 5 % when the transition to the diffusion approximation is, respectively, at 1.4 MeV and 8.8 MeV. The corresponding saving in CPU time relative to an all-transport solution is 31 % and 43 %. For the low order transport approximation used, this CPU time is significantly shorter than that required by ONEDANT, with its built-in diffusion synthetic acceleration.