ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Illinois legislature lifts ban on nuclear energy, funds clean energy
The Illinois General Assembly passed a clean energy bill on October 30 that would, in part, lift a 30-year moratorium on new nuclear energy in the state and create incentives for more energy storage.
Yibin B. Gu, Jalal B. Javedani, George H. Miley
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 929-932
Fusion Diagnostic and Neutronic Experiment and Analysis | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40273
Articles are hosted by Taylor and Francis Online.
A portable cylindrical electrostatic fusion device (C-device) was developed. Earlier studies have focused on spherical geometry.1–2 Here we discuss a related, but radically different cylindrical version which offers great promise for application requiring that geometry. The C-device, operating in a plasma glow discharge mode, has produced neutrons at 106 neutrons/sec for D-D fusion (equivalent to 108 neutrons/sec for D-T fusion). When used as a neutron generator, the C-device is well suited for tomographic diagnosis. Such a neutron generator would have advantages over both a beam-solid target generator and a neutron-emanating isotope. Advantages over a beam-solid target include lower estimated capital cost, longer life expectancy; over an isotope are an on/off capability, minimal radioactive inventory, variable source strength, self-calibrating capability, no storage shield. A detailed description of the device along with preliminary experimental data and an analysis of neutron yield vs. different operating parameters will be presented.