ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
J. J. MacFarlane, R. R. Peterson, P. Wang, G. A. Moses
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 886-890
Inertial Confinement Fusion Reactor, Reactor Target, and Driver | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40266
Articles are hosted by Taylor and Francis Online.
We present results from radiation-hydrodynamics calculations which show the central role resonant self-absorption plays in reducing radiative energy loss rates in high-gain ICF target chamber plasmas. Calculations were performed using a non-LTE radiative transfer model which we have recently coupled to our target chamber radiation-hydrodynamics code. The lower radiation fluxes escaping the plasma, which occur due to the self-absorption of line radiation in their optically thick cores, lead to significantly lower temperature increases at the surface of the target chamber first wall. The calculations were performed for the SIRIUS-P laser-driven direct-drive ICF power reactor. In this conceptual design study, high-gain targets release approximately 400 MJ of energy in the center of a gas-filled target chamber. The target debris ions and x-rays are stopped in the gas, and the energy is reradiated to the chamber wall over a much longer time scale. Because the time scales are comparable to the time it takes to thermally conduct energy away from the first surface, the thermal stresses and erosion rates for the first wall are greatly reduced.