ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Michael J. Monsler, Wayne R. Meier
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 873-880
Inertial Confinement Fusion Reactor, Reactor Target, and Driver | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40264
Articles are hosted by Taylor and Francis Online.
The ability to manufacture on the order of 108 targets per year in a completely automated target production facility to the required precision and at an acceptable cost is a key issue for inertial fusion energy (IFE). Based on our evaluation of alternative approaches to automated target fabrication, we conclude that a combination of controlled-mass microencapsulation for making polymer fuel capsules, electrostatic spraying of a polymer for building the ablation layer, a new injection fill process for DT fueling, beta-layering for fuel layer symmetrization, and precision casting of hohlraums and sabots would be attractive for mass production after appropriate technology development. We describe the characteristics of the proposed production processes and conclude that IFE targets can be made with acceptable cost.