ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
I. N. Sviatoslavsky, G. L. Kulcinski, G. A. Moses, D. Bruggink, R. L. Engelstad, H. Y. Khater, E. M. Larsen, E. G. Lovell, J. J. MacFarlane, E. A. Mogahed, R. R. Peterson, M. E. Sawan, P. Wang, L. J. Wittenberg
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 868-872
Inertial Confinement Fusion Reactor, Reactor Target, and Driver | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40263
Articles are hosted by Taylor and Francis Online.
This paper describes the design of a 1000 MWe inertially confined fusion power reactor utilizing near symmetric illumination provided by a KrF laser. The nominal laser energy is 3.4 MJ, the target gain is 118 and the rep-rate is 6.7 Hz. Sixty beams are distributed on ten horizontal planes with six beams in each plane forming a cone with the vertex at the reactor chamber center. The chamber is spherical internally with a radius of 6.5 m and is divided into 12 vertical modules consisting of two independent parts, the first wall assembly and a blanket assembly. The first wall assembly is made of a C/C composite and is cooled with non-breeding granular solid TiO2 flowing by gravity at a constant velocity. The blanket assembly is made from SiC composite and is cooled with granular Li2O also flowing by gravity. After going through the heat exchangers, the granular materials are returned to the reactor by means of a fluidized bed. The first wall is protected with a xenon buffer gas at 0.5 torr. The chamber is housed in a cylindrical building 42 m in radius and 86 m high, and is surrounded with a 1.5 m thick biological wall at a radius of 10 m. The laser beam ports are open to the containment building, sharing the same vacuum. Two power conversion cycles have been analyzed, a steam Rankine cycle with an efficiency of 47% and an advanced He gas Brayton cycle at an efficiency of 51%. The nominal COE is ∼65 mills/kWh assuming an 8% interest on capital.