ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Andrew T. Anderson, Michael T. Tobin, Per F. Peterson
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 804-808
National Ignition Facility | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40253
Articles are hosted by Taylor and Francis Online.
The ablation of first surface materials by x rays is a primary threat to the final optics in the NIF target chamber. To meet the operational goals of the facility, the designs of the chamber wall, target holder, and diagnostic surfaces must minimize ablation by x rays, typically by specifying materials that are low-Z, high temperature resistant, and shock resistant. Additionally, the response of the optics to direct target emissions must be understood. This paper describes some experimental and modeling work to develop the validated computer models necessary to quantify the x-ray response of various materials. These codes and further experiments will then confirm the ability of NIF first surface designs to meet functional requirements.