ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
John D. Sethian, Robert H. Lehmberg, Carl J. Pawley, Alban V. Deniz, Stephen E. Bodner, Edgar A. McLean, Mark S. Pronko, John Hardgrove, Malcolm W. McGeoch, Kent A. Gerber, Stephen P. Obenschain, John A. Stamper, Thomas H. Lehecka
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 717-721
Future Inertial Confinement Fusion Facility | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40241
Articles are hosted by Taylor and Francis Online.
Nike is a large angularly multiplexed Krypton-Fluoride (KrF) laser under development at the Naval Research Laboratory. It is designed to explore the technical and physics issues of direct drive laser fusion1. When completed, Nike will deliver 2–3 kJ of 248 nm light in a 4 nsec pulse with intensities exceeding 2 × 10 14W/cm2 onto a planar target. Spatially and temporally incoherent light will be used to reduce the ablation pressure nonuniformities to less than 2% in the target focal plane. The Nike laser consists of a commercial oscillator/amplifier front end, an array of gas discharge amplifiers, two electron beam pumped amplifiers (one with a 20 × 20 cm2 aperture, the other with a 60 × 60 cm2 aperture) and the optics required to relay, encode, and decode the beam. Approximately 90% of the system is operational and currently undergoing tests: the system is complete through the 20 cm amplifier, the 60 cm amplifier has completed all the necessary electron beam/pulsed power tests, and is currently being developed into a laser amplifier, and most of the optics have been installed. It is anticipated that Nike will be fully operational in the fall of 1994.