ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
J. M. Mack, A. A. Hauer, N. D. Delamater, W. W. Hsing, R. G. Watt, D. A. Baker, D. B. Harris, G. R. Magelssen, J. M. Wallace, L. Suter, D. Ress, L. Powers, O. Landen, R. Thiessen, D. Phillion, P. Amendt
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 687-695
Inertial Confinement Experiment | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40237
Articles are hosted by Taylor and Francis Online.
Symmetric radiation drive is required for achieving ignition in laboratory experiments. Over the last two years, a concerted series of drive symmetry experiments have been performed on the Nova laser system. The goals of this work were to develop measurement techniques and to apply them to symmetry variation and control experiments. The emphasis in this initial work has been on time integrated measurements (integrated over the laser drive pulse). We have also begun work on methods for time resolved measurements. Most of our work used the symmetry signature impressed on the compressed core of a capsule imploded in a hohlraum (cylindrical canister) environment. X-ray imaging of this core provides a mapping that can be compared with theoretical modeling and related to a specific amount of drive asymmetry. This method is indirect and we have taken great care in understanding the formation of the symmetry signature and in its comparison with simulations. A review of drive symmetry measurement and control experiments is presented, including data from time integrated and time resolved measurements; these measurements are also compared to modeling. Under carefully controlled conditions results from symmetry measurements (and from other auxiliary measurements) are reproducible, and indicate that aspects of implosions symmetry can be controlled.