ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. M. Mack, A. A. Hauer, N. D. Delamater, W. W. Hsing, R. G. Watt, D. A. Baker, D. B. Harris, G. R. Magelssen, J. M. Wallace, L. Suter, D. Ress, L. Powers, O. Landen, R. Thiessen, D. Phillion, P. Amendt
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 687-695
Inertial Confinement Experiment | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40237
Articles are hosted by Taylor and Francis Online.
Symmetric radiation drive is required for achieving ignition in laboratory experiments. Over the last two years, a concerted series of drive symmetry experiments have been performed on the Nova laser system. The goals of this work were to develop measurement techniques and to apply them to symmetry variation and control experiments. The emphasis in this initial work has been on time integrated measurements (integrated over the laser drive pulse). We have also begun work on methods for time resolved measurements. Most of our work used the symmetry signature impressed on the compressed core of a capsule imploded in a hohlraum (cylindrical canister) environment. X-ray imaging of this core provides a mapping that can be compared with theoretical modeling and related to a specific amount of drive asymmetry. This method is indirect and we have taken great care in understanding the formation of the symmetry signature and in its comparison with simulations. A review of drive symmetry measurement and control experiments is presented, including data from time integrated and time resolved measurements; these measurements are also compared to modeling. Under carefully controlled conditions results from symmetry measurements (and from other auxiliary measurements) are reproducible, and indicate that aspects of implosions symmetry can be controlled.