ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
E.M. Drobyshevski, B.G. Zhukov, R.O. Kurakin, V.A. Sakharov, A.M. Studenkov
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 649-653
Plasma Fueling and Fuel Cycle | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40230
Articles are hosted by Taylor and Francis Online.
Small body launching that uses gas or plasma faces the fundamental problem caused by excess energy loss that is due to the great wall surface/volume ratio of the barrel. For example, the efficiency of the plasma armature (PA) rail-gun acceleration is maximum for 8–10 mm-size bodies and drops as their size decreases.1 That is why in the case of nuclear fusion applications, where 1–2 mm-size pellets at 5–10 km/s velocity are desirable, electromagnetic launchers have not yet demonstrated an advantage over light-gas guns and one is now forced to search for a compromise between the pellet size (increasing it up to #3–4 mm) and its velocity (decreasing it down to ≈3 km/s).. As a whole, the probability of attaining 5–10 km/s velocity for 1–2 mm pellets seems to be rather remote at the present. When designing the 1 mm railgun that exploits the PA, we made use of our concept of dielectric pellet launching at the greatest constant acceleration, which is close to the strength or the electrode skin-layer explosion limits.2 That shortened the barrel length sufficiently. The system become highly compact, with the electrode length ≈10–16 cm, thus permitting the rapid test of new operation modes as well as modifications of the design, including magnetic field augmentation and the use of a compacted PA.3 As a result of these refinements, the difficulties caused by the catastrophic supply of mass ablated from the electrodes were overcome and regimes of 1–2 mm plastic pellets without sabot accelerated to 5 km/s were found. No pre-accelerator is used. The launcher operates in air at atmospheric conditions. The potentials and prospects of the small system created are far from being exhausted and deserve further elaboration.