ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
D. Driemeyer, D. Bowers, J. Davis, D. Kubik, H. Mantz, M. McSmith, T. Rigney, C. Baxi, L. Sevier, M. Carelli, L. Green, D. Ruzic, D. Hayden, M. Gabler, J. Yuen
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 603-610
Divertor Experiment and Technology | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40223
Articles are hosted by Taylor and Francis Online.
One of the key challenges in designing the next generation tokamaks is the development of plasma facing components (PFC's) that can withstand the severe environmental conditions at the plasma edge. The most intensely loaded element of the PFC's is the divertor. The divertor must handle high fluxes of energetic plasma particles and electromagnetic radiation without excessive impurity build-up in the plasma core. It must also remove helium ash while recirculating a large fraction of the unburned hydrogen fuel so that vacuum pumping requirements are not excessive. The gas-dynamic mode of divertor operation proposed for ITER expands the divertor design window to include several alternate heat sink and armor materials that were not feasible for the previous high recycling divertor approach. In particular, beryllium armor can now be considered with copper, niobium or vanadium structural materials cooled by liquid metal or possibly helium in addition to water. This paper presents some of the results achieved under ongoing ITER Plasma Facing Components research and development tasks. The overall effort involves U.S. industry, universities and national laboratories and is directed towards developing and/or testing: (1) ductile beryllium and beryllium joining techniques; (2) prototype divertor component design, fabrication and testing; (3) fiber-reinforced composites for beryllium and carbon; (4) beryllium plasma spray processes; (5) compliant layers for PFC armor attachment; (6) sacrificial armor layers for the divertor end-plates; and (7) tritium permeation and inventory in proposed PFC materials and components. The paper focuses on work being conducted by the industrial support team consisting of McDonnell Douglas Aerospace, Ebasco, General Atomics, Rocketdyne, University of Illinois and Westinghouse.