ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Thomas Hladschik, Klaus Schoepf
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 588-592
Plasma Heating and Current Drive, Plasma Engineering | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40221
Articles are hosted by Taylor and Francis Online.
In ITER the main loss mechanism of fast fusion alpha particles is expected to be due to toroidal field (TF) ripples caused by the finite number of TF coils. The associated radial diffusion of fast alphas is specified by an energy and space dependent diffusion coefficient which can be extended to account also for toroidal Alfven eigenmode (TAE) diffusion. Energy transfer from the fast alphas to the thermal background plasma is considered to occur due to Coulomb collisions and nuclear elastic scattering (NES). The α-transport is described here by a reduced slowing down kinetic equation of which the numerical solution provides for the energy-, space- and time-dependent alpha particle distribution in the tokamak plasma. This alpha distribution then constitutes the basis for a determinative calculation of the actual fusion power allocation to each distinct background species. Though TAE diffusion alone is not a significant fusion power loss mechanism, our recent calculations indicate that the coaction of TF-ripple (TFR) and TAE transport processes synergisticly results in a substantial reduction of fusion alpha power deposition.