ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Thomas Hladschik, Klaus Schoepf
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 588-592
Plasma Heating and Current Drive, Plasma Engineering | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40221
Articles are hosted by Taylor and Francis Online.
In ITER the main loss mechanism of fast fusion alpha particles is expected to be due to toroidal field (TF) ripples caused by the finite number of TF coils. The associated radial diffusion of fast alphas is specified by an energy and space dependent diffusion coefficient which can be extended to account also for toroidal Alfven eigenmode (TAE) diffusion. Energy transfer from the fast alphas to the thermal background plasma is considered to occur due to Coulomb collisions and nuclear elastic scattering (NES). The α-transport is described here by a reduced slowing down kinetic equation of which the numerical solution provides for the energy-, space- and time-dependent alpha particle distribution in the tokamak plasma. This alpha distribution then constitutes the basis for a determinative calculation of the actual fusion power allocation to each distinct background species. Though TAE diffusion alone is not a significant fusion power loss mechanism, our recent calculations indicate that the coaction of TF-ripple (TFR) and TAE transport processes synergisticly results in a substantial reduction of fusion alpha power deposition.