ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE awards $2.7B for HALEU and LEU enrichment
Yesterday, the Department of Energy announced that three enrichment services companies have been awarded task orders worth $900 million each. Those task orders were given to American Centrifuge Operating (a Centrus Energy subsidiary) and General Matter, both of which will develop domestic HALEU enrichment capacity, along with Orano Federal Services, which will build domestic LEU enrichment capacity.
The DOE also announced that it has awarded Global Laser Enrichment an additional $28 million to continue advancing next generation enrichment technology.
W. Maurer, the Wendelstein 7-X Technical Group
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 445-452
Fusion Magnet System | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40197
Articles are hosted by Taylor and Francis Online.
Wendelstein 7-X (W 7-X) is the largest stellarator experiment envisaged worldwide. It is prepared in the Max-Planck-Institute for Plasma Physics in Garching near Munich, Germany. The main goal of the experiment is demonstration of the optimized stellarator concept as an appropriate route for a fusion reactor. Essential physics and technical goals of this experiment are: demonstration of stationary operation, achievement of plasma parameters which allow a reliable prediction of the properties of a future stellarator reactor plasma without striving for ignition, and generation of the magnetic confinement with superconducting modular coils in a stellarator for the first time. The optimization criteria of the coil system are described and the status of the engineering development programme for the coils which is a common task of IPP and the nuclear research center KfK in Karlsruhe are reported.