ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
H. Yoshida, the JT-60 Team
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 406-417
Magnetic Fusion Experiment | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40193
Articles are hosted by Taylor and Francis Online.
Recent results on JT-60U experimental activities are presented. High fusion performance of nD(0)τETi(0)=1.1×1021 m−3 s keV, QDT= 0.6, Sn= 5.1×1016 s−1, Ti(0)= 37 keV and H-factor = 3.6 has been achieved in the regime named “high-βp H-mode.” A fractional bootstrap current has reached ∼0.5 in a series of high fusion performance plasmas of Ip≤ 2.5 MA and Bt= 4.4 T. Attaining broadened pressure profile and peaked current profile, on the other hand, beta limit has substantially extended to βN= 4.2 and βp= 4.7 in a low current and field regime of Ip= 0.4∼0.9 MA and Bt= 1∼1.5 T. This operation regime has enabled quasi-steady state ELMy H-mode discharges to be sustained with the high performance of βN= 2.5∼3, βp= 2.5∼3.1 and H-factor = 1.8∼2.2 under non-inductive full current drive condition that the fraction of bootstrap current and beam driven current was 0.60 and 0.48, respectively, at Ip = 0.5 MA and Bt=1.5 T. LHCD has demonstrated the non-inductive current drive up to 3.6 MA and the current drive efficiency of 3.5×1019 m−2 A/W, while non-inductive full current drive has been also achieved by NB and NB+LHCD. Active current profile control has been successfully investigated by LH wave and tangential NB. In ELMy H-mode discharges there have been observed the reduction of the heat load on divertor plates and the reduction of the helium density in core plasma. Future plans of JT-60 program are presented, which include 500 keV negative-ion based NBI system, new radiative pumped divertor, and JT-60 Super Upgrade.