ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
H. Yoshida, the JT-60 Team
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 406-417
Magnetic Fusion Experiment | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40193
Articles are hosted by Taylor and Francis Online.
Recent results on JT-60U experimental activities are presented. High fusion performance of nD(0)τETi(0)=1.1×1021 m−3 s keV, QDT= 0.6, Sn= 5.1×1016 s−1, Ti(0)= 37 keV and H-factor = 3.6 has been achieved in the regime named “high-βp H-mode.” A fractional bootstrap current has reached ∼0.5 in a series of high fusion performance plasmas of Ip≤ 2.5 MA and Bt= 4.4 T. Attaining broadened pressure profile and peaked current profile, on the other hand, beta limit has substantially extended to βN= 4.2 and βp= 4.7 in a low current and field regime of Ip= 0.4∼0.9 MA and Bt= 1∼1.5 T. This operation regime has enabled quasi-steady state ELMy H-mode discharges to be sustained with the high performance of βN= 2.5∼3, βp= 2.5∼3.1 and H-factor = 1.8∼2.2 under non-inductive full current drive condition that the fraction of bootstrap current and beam driven current was 0.60 and 0.48, respectively, at Ip = 0.5 MA and Bt=1.5 T. LHCD has demonstrated the non-inductive current drive up to 3.6 MA and the current drive efficiency of 3.5×1019 m−2 A/W, while non-inductive full current drive has been also achieved by NB and NB+LHCD. Active current profile control has been successfully investigated by LH wave and tangential NB. In ELMy H-mode discharges there have been observed the reduction of the heat load on divertor plates and the reduction of the helium density in core plasma. Future plans of JT-60 program are presented, which include 500 keV negative-ion based NBI system, new radiative pumped divertor, and JT-60 Super Upgrade.