ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. Hosea, J. H. Adler, P. Alling, C. Ancher, H. Anderson, J.L. Anderson,a) J.W. Anderson, V. Arunasalam, G. Ascione, D. Ashcroft, C.W. Barnes,a) G. Barnes, S. Batha,b) M.G. Bell, R. Bell, M. Bitter, W. Blanchard, N.L. Bretz, C. Brunkhorst, R. Budny, T. Burgess,c) H. Bush,e) C.E. Bush,c) R. Camp, M. Caorlin, H. Carnevale, S. Cauffman, Z. Chang,f) C.Z. Cheng, J. Chrzanowski, J. Collins, G. Coward, M. Cropper, D.S. Darrow, R. Daugert, J. DeLooper, H. Duong,h) L. Dudek, R. Durst,f) P.C. Efthimion, D. Ernst,d) J. Faunce, R. Fisher, R.J. Fonck,f) E, Fredd, E. Fredrickson, N. Fromm, G.Y. Fu, H.P. Furth, V. Garzotto, C. Gentile, G. Gettelfinger, J. Gilbert, J. Gioia, T. Golian, N. Gorelenkov,i) B. Grek, L.R. Grisham, G. Hammett, G.R. Hanson,c) R.J. Hawryluk, W. Heidbrink,j) H.W. Herrmann, K.W. Hill, H. Hsuan, A. Janos, D.L. Jassby, F.C. Jobes, D.W. Johnson, L.C. Johnson, J. Kamperschroer, J. Kesner,d) H. Kugel, S. Kwon,e) G. Labik, N.T. Lam,f) P.H. LaMarche, E. Lawson, B. LeBlanc, M. Leonard, J. Levine, F.M. Levinton,b) D. Loesser, D. Long, M.J. Loughlin,k) J. Machuzak,d) D.K. Mansfield, M. Marchlik,e) E. S. Marmar,d) R. Marsala, A. Martin, G. Martin, V. Mastrocola, E. Mazzucato, R. Majeski, M. Mauel,l) M.P. McCarthy, B. McCormack, D.C. McCune, K.M. McGuire, D.M. Meade, S.S. Medley, D.R. Mikkelsen, S.L. Milora,c) D. Mueller, M. Murakami,c) J.A. Murphy, A. Nagy, G.A. Navratil,l) R. Nazikian, R. Newman, T. Nishitani,m) M. Norris, T. O'Connor, M. Oldaker, J. Ongena,n) M. Osakabe,o) D.K. Owens, H. Park, W. Park, S.F. Paul, Yu.I. Pavlov,p) G. Pearson, F. Perkins, E. Perry, R. Persing, M. Petrov,q) C.K. Phillips, S. Pitcher,r) S. Popovichev,p) R. Pysher, A.L. Qualls,c) S. Raftopoulos, R. Ramakrishnan, A. Ramsey, D.A. Rasmussen,c) M.H. Redi, G. Renda, G. Rewoldt, D. Roberts,f) J. Rogers, R. Rossmassler, A.L. Roquemore, E. Ruchov,j) S.A. Sabbagh,l) M. Sasao,o) G. Schilling, J. Schivell, G.L. Schmidt, R. Scillia, S.D. Scott, T. Senko, R. Sissingh, C. Skinner, J. Snipes,d) P. Snook, J. Stencel, J. Stevens, T. Stevenson, B.C. Stratton, J.D. Strachan, W. Stodiek, E. Synakowski, W. Tang, G. Taylor, J. Terry,d) M.E. Thompson, J.R. Timberlake, H.H. Towner, A. von Halle, C. Vannoy, R. Wester, R. Wieland, J.B. Wilgen,c) M. Williams, J.R. Wilson, J. Winston, K. Wright, D. Wong,r) K.L. Wong, P. Woskov,d) G.A. Wurden,a) M. Yamada, A. Yeun,r) S. Yoshikawa, K.M. Young, M.C. Zarnstorff, S.J. Zweben
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 389-398
Magnetic Fusion Experiment | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40191
Articles are hosted by Taylor and Francis Online.
The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to ∼9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning; possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS ∼ 6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance is under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored.