ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J.T. Hogan, A. Martynov
Fusion Science and Technology | Volume 26 | Number 3 | November 1994 | Pages 322-326
International Thermonuclear Experimental Reactor (ITER) | Proceedings of the Eleventh Topical Meeting on the Technology of Fusion Energy New Orleans, Louisiana June 19-23, 1994 | doi.org/10.13182/FST94-A40180
Articles are hosted by Taylor and Francis Online.
In view of the preliminary nature of boundary models for reactor tokamaks, the sensitivity to edge gradients of the global mode MHD stability of the ITER EDA configuration has been examined. The POLAR-2D equilibrium and TORUS stability codes developed by the Keldysh Institute have been used. Transport-related profiles from the PRETOR transport code (developed by the ITER Joint Central Team) and axisymmetric equilibria for these profiles from the TEQ code (L.D. Pearlstein, LLNL) were taken as a starting point for the study. These baseline profiles are found to have quite high global stability limits, in the range g(Troyon) = 4 – 5. The major focus of this study is to examine global mode stability assuming small variations about the baseline profiles, changing the pressure gradients near the boundary. Such changes can be expected with an improved boundary model. Reduced stability limits are found in such cases, and unstable cases with g=2–3 are found. Thus, the assumption of ITER stability limits higher than g=2 must be treated with caution.