ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. E. Post, R. Mattas
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 779-790
Plasma Heating, Impurity Control, and Fueling | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40130
Articles are hosted by Taylor and Francis Online.
Poloidal divertors and pumped limiters are the leading candidates for impurity and particle control systems for ignited tokamaks. Such systems must be able to provide heat removal and He pumping while satisfying the requirements for (1) minimum plasma contamination by impurities, (2) reasonable component lifetime (∼ 1 year), and (3) minimum size and cost and maximum simplicity. The advantage of poloidal divertor systems is that they offer the possibility of low sputtering rates for the first wall components and modest pumping requirements due to the formation of a cool, dense plasma near the collector plates. Estimates made as part of the INTOR study indicate that the sputtering rates for pumped limiters could be unacceptably large. A engineering design study of a poloidal divertor system for an ignited tokamak indicates that such a system offers a reasonable solution to the impurity and particle control problem at only a modest increase in total reactor cost (∼7%) and complexity compared to a pumped limiter system.