ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
M. Murakamia, V. Arunasalam, J.D. Bella, M.G. Bell, M. Bitter, W.R. Blanchard, F. Boody, D. Boydb, N. Bretz, C.E. Busha, J.D. Callenc, J.L. Cecchi, R.J. Colchina, J. Coonrod, S.L. Davis, D. Dimock, H.F. Dylla, P.C. Efthimion, L.C. Emersona, A.C. Englanda, H.P. Eubank, R. Fonck, E. Fredrickson, H.P. Furth, L.R. Grisham, S. von Goeler, R.J. Goldston, B. Grek, D.J. Grove, R.J. Hawryluk, H. Hendeld, K.W. Hill, R. Hulse, D. Johnson, L.C. Johnson, R. Kaita, J. Kamperschroer, S.M. Kaye, M. Kikuchie, S. Kilpatrick, H. Kugel, P.H. LaMarche, R. Little, C.H. Maa, D. Manos, D. Mansfield, M. McCarthy, R.T. McCann, D.C. McCune, K. McGuire, D.M. Meade, S.S. Medley, D.R. Mikkelsen, D. Mueller, E. Nieschmidtf, D.K. Owens, V.K. Parea, H. Park, B. Prichard, A. Ramsey, D.A. Rasmussena, A.L. Roquemore, P.H. Rutherford, N.R. Sauthoff, J. Schivell, J-L. Schwobg, S.D. Scott, S. Sesnic, M. Shimadae, J.E. Simpkinsa, J. Sinnis, F. Staufferb, B. Stratton, S. Suckewer, G.D. Tait, G. Taylor, F. Tenney, C.E. Thomasa, H.H. Towner, M. Ulrickson, R. Wieland, M. Williams, K-L. Wong, A. Wouters, H. Yamadah, S. Yoshikawa, K.M. Young, M.C Zarnstorff
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 657-663
Plasma Engineering | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40115
Articles are hosted by Taylor and Francis Online.
The paper describes the present (end of February 1985) status of the plasma confinement studies in the TFTR tokamak with emphasis on those with neutral beam injection (NBI). Recent improvements in the device capabilities have substantially extended operating parameters: BT increased to 4.0 T, Ip to 2.0 MA, injection power (Pb) to 5 MW with H° or D° beams, to 5 × 1019 m−3 and Zeff reduced to 1.4. With ohmic heating (OH) alone, the previously established scaling for gross energy confinement time (τE ∝ ) has been confirmed at higher Ip and BT, and the maximum τE of 0.4 sec has been achieved. With NBI at Pb, substantially (by factor > 2) higher than POH, excellent power and particle accountability have been established. This suggests that the less-than-expected increase in stored energy with NBI is not due to problems of power delivery, but due to problems of confinement deterioration. τE is observed to scale approximately as Ip Pb−0.5 (independent of ), consistent with previous L-mode scalings. With NBI we have achieved the maximum τE of 0.2 s and the maximum Ti (o) of 4.4 keV in the normal operating regime, and even higher Ti(o) in the energetic-ion regime with low-ne and low Ip operation.