ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
B.B. Glasgow, W.G. Wolfer
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 596-601
Blanket and First-Wall Engineering | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40104
Articles are hosted by Taylor and Francis Online.
High heat flux components in fusion reactors will experience inelastic strains resulting from swelling, creep, and thermal expansion. Additionally, because of thermal and irradiation creep, the stresses will redistribute during the lifetime of the component. Current proposals for fusion first walls and divertors include structures fabricated by bonding two different metals together. The plasma side material is chosen to minimize sputtering; the coolant side material is chosen to maximize heat transfer. The structural response of such a design is not well known. Accordingly, a one dimensional inelastic stress analysis of a thin walled shell element has been performed. The stress analysis can include temperature dependent material properties, radiation induced swelling, thermal and irradiation creep, and thermal expansion. Furthermore, a simple equation has been derived for the case of a duplex plate constrained from bending. The stress distribution through the plate is followed with time. It is shown that the initial stress distribution evolves with time until some near steady state distribution is approached. The evolution is dependent on swelling and particularly on creep.