ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
T. L. Owens, F. W. Baity, D. J. Hoffman, J. H. Whealton
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 381-386
Electrical and Nuclear Component Design | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40074
Articles are hosted by Taylor and Francis Online.
Frequently, high-power pulsed ion cyclotron range of frequency experiments are limited by breakdown at the vacuum feedthrough. This paper describes the development and testing of vacuum feedthroughs to increase both reliability and capability. The ultimate goal of the program is to develop a continuous-wave feedthrough for the next generation of fusion experiments. A feedthrough concept currently under investigation consists of a simple, cylindrical alumina ceramic brazed between tapered coaxial conductors. A prototype has been tested to voltage levels in excess of 100 kV for 100-ms pulses and 70 kV for 5-s pulses at 28 MHz. Insertion-voltage-standing-wave ratios are <1.15:1 for frequencies below 450 MHz. An upgraded water-cooled version being fabricated for use on TEXTOR will be described.