ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Y-K. M. Peng, D. J. Strickler, S. K. Borowski, W. R. Hamilton, R. L. Reid, (ORNL), J. R. Haines, V. D. Lee, (MDAC), G. E. Gorker, S. S. Kalsi, B. W. Riemer, E. C. Selcow, (GAC), G. R. Dalton, (U. of Florida), G. T. Bussell, (S&W), J. B. Miller, (U. of Tennessee)
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 338-343
Power Reactor and Next-Generation Studies | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40067
Articles are hosted by Taylor and Francis Online.
Initial assessments of ignition devices based on the spherical torus concept1 suggest that an ignition spherical torus (IST) can be highly cost-effective and exceptionally small in unit size. Assuming advanced methods of current drive and confinement and beta scalings with plasma current, a D-T IST with a toroidal field of 2 to 3 T is estimated to have a major radius ranging from 1 m to 1.6 m, and a fusion power less than 60 MW. For the nominal IST (at 2 T and 1.6 m), the direct cost of the nuclear island is estimated to be about $120 M with a total direct cost about $340 M in mid-1984 dollars based on the Fusion Engineering Design Center (FEDC) cost algorithm2. For ISTs with higher field and smaller size (e.g., at 3 T and 1 m), further reductions of the cost of the nuclear island are estimated. In case of confinement scaling with the plasma size only, strong plasma paramagnetism (self-generated magnetic field) in the spherical torus may still serve to compensate for the projected confinement shortfall. Because of the modest field strength, only conventional engineering approaches are needed in the IST concepts, leading to dramatic engineering simplifications in comparison with the conventional high-field ignition designs3. A free-standing TF coil/vacuum vessel structure is assessed to be feasible and relatively independent of the shield structure and poloidal field coils. The direct cost of this “stand-alone” torus of the nominal IST is estimated to be $70 M. These highly attractive projections of the IST result directly from a combination of the possible exceptional features of the spherical torus plasma4: high beta, low beta poloidal, naturally large elongation, high plasma current, strong paramagnetism, and tokamak-like confinement, which also place the spherical torus in a plasma regime distinct from tokamaks of conventional aspect ratios. Experimental testing of the viability of the spherical torus concept is suggested.