ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
CFS working with NVIDIA, Siemens on SPARC digital twin
Commonwealth Fusion Systems, a fusion firm headquartered in Devens, Mass., is collaborating with California-based computing infrastructure company NVIDIA and Germany-based technology conglomerate Siemens to develop a digital twin of its SPARC fusion machine. The cooperative work among the companies will focus on applying artificial intelligence and data- and project-management tools as the SPARC digital twin is developed.
G. E. Gorker, L. J. Perkins
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 332-337
Power Reactor and Next-Generation Studies | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40066
Articles are hosted by Taylor and Francis Online.
A tandem mirror reactor (TMR) power plant balance model has been developed and is now being used as a computer aid for performing parametric studies. End-cell power injection into the plasma and the physics plasma Q are used to determine the fusion power. About 80% of the fusion power is transferred by high-energy neutrons to the blanket modules and structures. The other 20% of the fusion power in the high-energy alpha particles is used to heat the deuterium-tritium (D-T) plasma. Most of the plasma-ionized particles transfer their energy to the halo dumps and direct converters. The plant efficiency is calculated for three different system cycles: (1) the pressurized water/saturated steam cycle, (2) the superheated steam cycle, and (3) the more complex superheat/reheat cycle. There is a significant improvement in plant efficiency as the electrical power multiplication factor and steam cycle efficiency increases.