ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
R.R. Peterson, G.A. Moses, R.L. Engelstad, D.L. Henderson, G.L. Kulcinski, E.G. Lovell, M.E. Sawan, I.N. Sviatoslavsky, J.J. Watrous, R.E. Olson, D.L. Cook
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1895-1900
Inertial Confinement Fusion Reactor | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40038
Articles are hosted by Taylor and Francis Online.
The Light Ion Fusion Target Development Facility (TDF) is expected to test approximately ten targets per day having yields in the 50 to 800 MJ range. This large number of high yield micro-explosions creates design problems in the TDF that are not present in PBFA-I and PBFA-II. The TDF would be the first light ion facility where radioactivity in the target debris and induced in the facility itself constitute a biological hazard. It must have a first wall and a target diagnostics package that can survive repeated mechanical and thermal pulses from the target microexplosions. In addition, the repetition rate is much higher than for present day light ion beam drivers. A preliminary conceptual design for the TDF including a reaction chamber, biological shield, target diagnostics package and driver that addresses these and other problems is presented.