ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
Shifting the paradigm of supply chain
Chad Wolf
When I began my nuclear career, I was coached up in the nuclear energy culture of the day to “run silent, run deep,” a mindset rooted in the U.S. Navy’s submarine philosophy. That was the norm—until Fukushima.
The nuclear renaissance that many had envisioned hit a wall. The focus shifted from expansion to survival. Many utility communications efforts pivoted from silence to broadcast, showcasing nuclear energy’s elegance and reliability. Nevertheless, despite being clean baseload 24/7 power that delivered a 90 percent capacity factor or higher, nuclear energy was painted as risky and expensive (alongside energy policies and incentives that favored renewables).
Economics became a driving force threatening to shutter nuclear power. The Delivering the Nuclear Promise initiative launched in 2015 challenged the industry to sustain high performance yet cut costs by up to 30 percent.
R. D. Woolley, M. Bell, J. Coonrod, P. Efthimion, R. J. Hawryluk, W. Hojsak, R. J. Marsala, D. Mueller, W. Rauch, G. D. Tait, G. Taylor, M. Thompson
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1807-1812
Power Conversion, Instrumentation, and Control | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40023
Articles are hosted by Taylor and Francis Online.
The Tokamak Fusion Test Reactor (TFTR) employs feedback control systems for four plasma parameters, i.e. for plasma current, for plasma major radius, for plasma vertical position, and for plasma density. The plasma current is controlled by adjusting the rate of change of current in the Ohmic Heating (OH) coil system. Plasma current is continuously sensed by a Rogowski coil and its associated electronics; the error between it and a preprogrammed reference plasma current history is operated upon by a “proportional-plus-integral-plus-derivative” (PID) control algorithm and combined with various feedforward terms, to generate compensating commands to the phase-controlled thyristor rectifiers which drive current through the OH coils. The plasma position is controlled by adjusting the currents in Equilibrium Field (EF) and Horizontal Field (HF) coil systems, which respectively determine the vertical and radial external magnetic fields producing J X B forces on the plasma current. The plasma major radius position and vertical position, sensed by “Btheta” and “Brho” magnetic flux pickup coils with their associated electronics, are controlled toward preprogrammed reference histories by allowing PID and feedforward control algorithms to generate commands to the EF and HF coil power supplies. Plasma density is controlled by adjusting the amount of gas injected into the vacuum vessel. Time-varying gains are used to combine line-averaged plasma density measurements from a microwave interferometer plasma diagnostic system with vacuum vessel pressure measurements from ion gauges, with various other measurements, and with preprogrammed reference histories, to determine commands to piezoelectric gas injection valves.