ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
L.L. Lengyel, K. Borrass
Fusion Science and Technology | Volume 8 | Number 1 | July 1985 | Pages 1760-1765
Plasma Heating, Impurity Control, and Fueling | Proceedings of the Sixth Topical Meeting on the Technology of Fusion Energy (San Francisco, California, March 3-7, 1985) | doi.org/10.13182/FST85-A40015
Articles are hosted by Taylor and Francis Online.
The fueling requirements of fusion reactors are analyzed on the basis of a recent assessment performed for NET (Next European Torus). Results of penetration depth calculations applied to single pellets under thermonuclear plasma conditions are described. Data corresponding to the commonly used neutral gas shielding ablation model and a magnetic shielding approximation are compared. The pellet size and pellet velocity requirements for central fueling are established. Scenario calculations are performed with the help of a 1D tokamak transport code. The pellet size, pellet velocity, and injection frequency requirements for continuous fueling or, for example, ignition with the help of pellets are obtained. The effect of runaway electrons, NB ions and alpha particles is estimated by calculating the ablation rates caused by these particles in fusion plasmas and comparing them with the ablation rate induced by thermal electrons.